37 resultados para Skin and Connective Tissue Diseases

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Phenol-soluble modulins (PSMs) are amphipathic, pro-inflammatory proteins secreted by most Staphylococcus aureus isolates. This study tested the hypothesis that in vitro PSM production levels are associated with specific clinical phenotypes. METHODS: 177 methicillin-resistant S. aureus (MRSA) isolates from infective endocarditis (IE), skin and soft tissue infection (SSTI), and hospital-acquired/ventilator-associated pneumonia (HAP) were matched by geographic origin, then genotyped using spa-typing. In vitro PSM production was measured by high performance liquid chromatography/mass spectrometry. Statistical analysis was performed using Chi-squared or Kruskal-Wallis tests as appropriate. RESULTS: Spa type 1 was significantly more common in SSTI isolates (62.7% SSTI; 1.7% IE; 16.9% HAP; p < 0.0001) while HAP and IE isolates were more commonly spa type 2 (0% SSTI; 37.3% IE; 40.7% HAP; p < 0.0001). USA300 isolates produced the highest levels of PSMs in vitro. SSTI isolates produced significantly higher quantities of PSMα1-4, PSMβ1, and δ-toxin than other isolates (p < 0.001). These findings persisted when USA300 isolates were excluded from analysis. CONCLUSIONS: Increased in vitro production of PSMs is associated with an SSTI clinical source. This significant association persisted after exclusion of USA300 genotype isolates from analysis, suggesting that PSMs play a particularly important role in the pathogenesis of SSTI as compared to other infection types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The practice of an infectious diseases (ID) physician is evolving. A contemporary understanding of the frequency and variety of patients and syndromes seen by ID services has implications for training, service development and setting research priorities. We performed a 2-week prospective survey of formal ID physician activities related to direct inpatient care, encompassing 53 hospitals throughout Australia, New Zealand and Singapore, and documented 1722 inpatient interactions. Infections involving the skin and soft tissue, respiratory tract and bone/joints together accounted for 49% of all consultations. Suspected/confirmed pathogens were primarily bacterial (60%), rather than viral (6%), fungal (4%), mycobacterial (2%) or parasitic (1%). Staphylococcus aureus was implicated in 409 (24%) episodes, approximately four times more frequently than the next most common pathogen. The frequency of healthcare-related infections (35%), immunosuppression (21%), diabetes mellitus (19%), prosthesis-related infections (13%), multiresistant pathogens (13%) and non-infectious diagnoses (9%) was high, although consultation characteristics varied between geographical settings and hospital types. Our study highlights the diversity of inpatient-related ID activities and should direct future teaching and research. ID physicians' ability to offer beneficial consultative advice requires broad understanding of, and ability to interact with, a wide range of referring specialities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are the non-coding RNAs that act as post-translational regulators to their complimentary messenger RNAs (mRNA). Due to their specific gene silencing property, miRNAs have been implicated in a number of cellular and developmental processes. Also, it has been proposed that a particular set of miRNA spectrum is expressed only in a particular type of tissue. Many interesting findings related to the differential expression of miRNAs in various human diseases including several types of cancers, neurodegenerative diseases and metabolic diseases have been reported. Deregulation of miRNA expression in different types of human diseases and the roles various miRNAs play as tumour suppressors as well as oncogenes, suggest their contribution to cancer and/or in other disease development. These findings have possible implications in the development of diagnostics and/or therapeutics in human malignancies. In this review, we discuss various miRNAs that are differentially expressed in human chronic inflammatory diseases, neurodegenerative diseases, cancer and the further prospective development of miRNA based diagnostics and therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods: Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results: Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion: Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most patients with chronic conditions, such as osteoarthritis, only have contact with healthcare professionals for a few hours over the course of a year. Good self-management programs are, therefore, critical for patients to cope with their conditions on a daily basis. Drs Osborne, Jordan and Rogers discuss the importance of engaging patients, clinicians and policymakers in the development and implementation of self-management programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha  mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. (J Allergy Clin Immunol 2015;135:3-13.)